Question Bank

Q.1 Choose the correct option from the following:

 Hydro 	ocarbons are
---------------------------	--------------

- (a) Composed of carbon and hydrogen
- (b) Composed of carbon, hydrogen, and oxygen
- (c) Composed of carbon and oxygen
- (d) Composed of carbon and nitrogen

2. Hydrocarbons are

(a) insoluble in water

(b) composed of carbon and hydrogen

(c) both (a) and (b)

- (d) None of these
- 3. Which of the following is a correct name according to the IUPAC rules?
 - (a) 2-Mcthylcyclohexane

(b) 2-Ethyl-2-methylpeiitane

(c) 3,4-Dimethylpentane

- (d) 3-Ethyl-2-methylpentane
- 4. What type of an alkyl group is an isobutyl group?
 - (a) primary
- (b) secondary
- (c) tertiary
- (d) none of these
- 5. Which molecular formula indicates 2-methylpentane?
 - (a) C_5H_{12}
- (b) C_6H_{14}
- (c) C_5H_{10}

- (d) C_6H_{12}
- 6. Which molecular formula indicates 2,2,4-trimethylhexane?
 - (a) C_9H_{20}
- (b) C_9H_{18}

(c) C_8H_{18}

(d) C_8H_{16}

- 7. How many isomers are possible for butane?
 - (a) 2

(b) 3

(c) 4

(d) 5

(c) Vinyl chloride

(d) Allyl alcohol.

(b) 2-butenal

_	The second secon	,		
22. The	structure of isobut	vl group is ·		
(a)	$(CH_3)_3CH$		(b) CH ₃ CH ₂ CH ₂ CH	\mathbf{H}_{2}
(c)	(CH ₃) ₂ CHCH ₂ Ch		(d) $(CH_3)_2 C = CH_2$	
23. Wh	nich of the followin	o alkanes will hav	e the highest boiling	point?
		(b) Isopentane		(d) n-Octane
24. Th	e maximum numbe	er of isomers for a	n alkene with molec	cular formula C ₄ H ₈ is:
(a)	•		(c) 5	(d) 3
25. Th	e number of isome	` '		,
		(b) 6	(c) 7	(d) 5
		\ /	mpound C ₂ H ₃ Cl ₂ Br	is:
		(b) 4	(c) 2	(d) 3
27. N	Monochlorination of	alkane in presence		as an intermediate.
	a) Carbocation	(b) Carbanion	(c) Free radical	(d) None of these
28. H	How many isomeric	products obtained	upon monochlorinati	on of n-pentane?
	a) 2	(b) 3	(c) 1	(d) 4
`	Hydrolysis of Grigna	` /	s	
	(a) Alkane	(c) Alcohol		(d) None of these
				formation of free
	radical.			
((a) 2° as well as 3°		(c) 1° as well as 3°	0
((c) 1° as well as 2°		(d) none of these	
31.	Both symmetrical ar	nd unsymmetrical a	lkanes can be synthe	sized using
	(a) Wurtz reaction		(b) Corey-Herbert	House
	(c) Kolbe electrolys		(d) Wurtz-fitting re	
32.	Initiation step for th	e photochemical ha	logenations of alkan	e is
	(a) exothermic		(b) endothermic	
	` '		(d) depend on alka	ane.
33.	The general formula			
	(a) RMgLi	(b) RMgX	-	(d) R ₂ CuLi
34.	In a homologous se	ervices, each memb	er differ from the ne	ext member by a constant
	amount:	d) OII		
	(a) -CH ₃	(b) –CH ₂	(c) $-C_2H_5$	(d) -CH
35.		c products obtained		ion of iso-pentane?
	(a) 2	(b) 3	(c) 1	(d) 4
36.			Zn and acid produce	e
	(a) n-Butane	(b) isobutane	(c) n-octane	(d) isoctane

-		
37.	Organic molecules contains bond.	
	(a) covalent (b) ionic	(c) coordinate (d) dative
38.	During the chlorination of n-butane in preplaced?	presence of light, which types of H-atom is
	(a) only 1° (b) 3°	(c) only 2° and 3° (d) only 1° and 2°
39.	When ethyl chloride react with Li and C	
	(a) Lithium diethyl copper	(b) Dimethyl copper
	(c) Copper diethyl lithium	(d) Lithium methyl ethyl copper
40.	The chlorination of methane in presence	
	(a) an electrophilic addition	
	(c) an electrophilic substitution	(d) nucleophilic addition
41.	Cycloalkanes have the same molecular for	ormula as:
	(a) Alkanes (b) Cycloalkenes	(c) Alkenes (d) Alkynes
42.		of light, the second step in which chlorine free
	radical react with alkane is called:	
		(c) Termination (d) Rate determining
43.	0 0 .	
		(c) H-bond (d) π -bond
44.	During the chlorination of n-pentane in replaced?	presence of light, which type of H-atoms is
	(a) 1° and 2° (b) 1° only	(c) 2° and 3° (d) 1° and 3°
45.	If during the reaction energy is absorbed	I then the reaction is
	(a) Endothermic (b) Exothermic	(c) Homogeneous (d) Hetrogeneous
46.	Which of the following reaction cannot	be used to prepare alkanes?
	(a) Wurtz reaction	(b) Corey-House reaction
	(c) Friedal-Craft alkylation	(d) Grignard reaction
47.	0	
	(a) Wurtz reaction	(b) Grignard reaction
40	(c) Corey-House reaction	(d) Friedal-Craft reaction
48		
40	(a) Ethanol (b) Ethylbromide	(c) Ethane (d) Magnesium bromide
49	,	*
50	(a) Free radical (b) Carbocation Which of the following reagent is suite	(c) Carbanion (d) Pentavalent ble for syn-hydroxylation of cycloalkene?
20	(a) Cold alkaline KMnO ₄	(b) Hot KMnO ₄
	(c) HCOOOH	(d) Hg(OAc) ₂

411.0		
55.	Which is not an oxidizing agent?	
	(a) $KMnO_4$ (b) $NalO_4$	(c) HCOOOH (d) HgSO ₄
66.	Addition of HBr to 1-propene follow	
	(a) Markovnikovs rule	(b) Anti-Markovnikov's rule
	(c) Satyzeff rule	(d) None of these.
67.	What happen during hydration of alkyne?	
	(a) Addition of H ₂ O	(b) Loss of H ₂ O
	(c) addition of H ₂	(d) loss of H ₂
68.	Which of the following alkyne gives white	e precipitation with Tollens' reagent?
	(a) 1-pentyne (b) 1-pentene	(c) 2-butyne (d) 3-hexyne
69.	Which of the following reagent is suitable	for anti-hydroxylation of cycloalkene:
	(a) Cold alkaline KMnO ₄	(b) Hot KMnO ₄
	(c) HCOOOH	(d) $Hg(OAc)_2$
70.	Choose the incorrect statement for the real	ction given below:
	$CH_3CH_2CH_2Br \xrightarrow{Ethanol} A + B$	
	(a) Proportion of product is decided by S	aytzeff rule.
	(b) Proportion of product is decided by M	
	(c) Both products are formed in unequal	
	(d) The reaction is dehydrohalogenation.	
71.	Isobutylene react with Hl to give:	48.1.11.11
	(a) Isobutane (b) Isobutyl iodide	(c) Isobutene (d) t-butyl iodide
72.	1-butyne can be distinguished from 2-buty	yne by using:
	(a) Baeyer's reagent	(b) Grignard reagent
	(c) Wurtz reaction	(d) Tollens' reagent
73.		(c) 2-butene (d) 1-hexene
74	(a) 1-propene (b) 1-butene	f dil KMnO ₄ in its reaction with alkene is
74	known as:	4
	(a) Markovnikov reaction	(b) Grignard reaction
	(c) Baeyer test	(d) Saytzeff test
75	0.7	H ₂ O to give:
	(a) 1-chlcro-2-propanl	(b) 2-chloro-2-propanoi
	(c) 1-chlcro-1-propanl	(b) 2-chloro-1-propanol
76		as we would not d
	(a) Both (b) and (d)	(b) Propanoic acid
	(c) Butanoic acid and CO ₂	(d) Acetic acid
7		(b) Propanoic acid
	(a) Formic acid	(d) Acetic acid
	(c) Butanoic acid	(4) 1100110

				1		1		-
78.	The dehydrohalogenation of 1,2-dibromobutane with alcoholic KOH follow sodamide give:				ollowed b			
	(a) 1-bute	ne	(b) 2-butene	(c) 1-butyne	;	(d) 2-buta	anol
79.	Which of fe	ollowing i	s stronger acid?					
	(a) Acetyl	lene	(b) Water	(0	c) Alcohol		(d) Ethan	e
80.	Which of th	he followir	ng compound will	l give ac	cetaldehyde	and Co	O ₂ upon o	zonolysis
	(a) 1-bute		(b) 1-propene) 1-pentene		(d) 2-bute	
81.	Which of the	he following	ng compound wil	l give o	nly acetald	ehyde ı	ipon ozor	ılysis ?
	(a) 1-bute	ne	(b) lsobutylene	(c) 1-pentene	;	(d) 2-bute	ne
Q.2	Short and	subjective	long questions	:				
1.								
	(a) Alkane		(b) Alkene	(c)	Alkyne	(d)	Free radio	cal
	(e) Chain re	eaction	(f) Carbocation	(g)	Homologo	us serie	es	
2. Give the structured formula of following compounds:								
	(a) 2,3-dime	ethylbutane	•	(b) $2,2$	2,3,3-tetram	ethylpe	ntane	
	(c) 4-ethyl-3	3,4-dimeth	yl heptane	(d) 3-c	chloro-2-me	thylper	ntane	
	(e) 3,3-dieth	yl-5-isopr	opyl-4-methylocta	ine.				
3.	The names structure.	given belo	ow are objectiona	ble. Re	write their	correct	IUPAC	name and
	(a) 3-methyl	-2-butene		(b) 1,1	,1-trimethy	lpentan	e	
	(c) 2-ethyl-1	- propene		(d) 2,4	,5-trimethy	lhexane		
	(e) 1,1,3-trin	•		(f) 2-pi	ropyl-1-proj	pene.		
4.	Give all post name:	sible isome	ers of the following	ng aliph	atic compo	and and	give the	ir IUPAC
	(a) C_4H_{10}	(b) (C ₅ H ₁₂					
	Explain the f							
	Arrange the l	boiling poi	nt of following m	olecule	s and expla	in vour	Ongree	
1	(a) Pentane (b) Isopenta	n (c) Neopentain	9.1	- with expite	ııı your	answer	
	Explain the							

- What is Grignard reagent? 1.
- Boiling point of n-propane n-butane, n-pentane and n-hexane are -42, 0, 36 and 69°C 2. respectively OR B.P. of n-, iso- and neopentane are 36, 28 and 9.5°C respectively. OR Arrange the b.p. of n-, iso- and neo-pentane and explain your answer. OR In

homologous series, as number of carbon atoms increase, b.p. increase but number of branch increase, b.p. decrease.

- 3. Write reaction mechanism for the monochlorination of methane / ethane / alkane. OR Give stepwise detail mechanism for chlorination of methane/ethane/alkane.
- 4. Differentiate between: Wurtz and Corey-Horbet House reation
- 5. Calculate the percentage of isomeric products obtained upon monochlorination of n-butane / n-pentane / Isopentane. The relative reactivity of 1°, 2° and 3° H are 1:3.8:5 respectively.
- 6. Monochlorination of n-butane gives 1-chlorobutane and 2-chlorobutane in 28 % and 72 % respectively. Calculate relative reactivity of concerned hydrogen.
- 7. Do as directed:
 - (i) Sec. Butyl bromide reacts with Mg in presence of dry ether, followed by hydrolysis.
 - (ii) Ethyl chloride reacts with Li and CuLi, followed by reation with n-heptyl bromide.
- 8. Complete and rewrite the following equation.
 - (i) Sec. Butyl bromide $\xrightarrow{\text{(i) Mg}}$ $CH_3CH_2CH_2CH_3$ $CH_3CHCH_2CH_3$ Br
 - (ii) Isopropyl bromide $\xrightarrow{Z_{1}/H^{+}} CH_{3}CH_{2}CH_{3}$ $CH_{3}CH CH_{3}$
 - (iii) Ethylchloride $\xrightarrow{\text{Li}}$ $\xrightarrow{?}$ $\xrightarrow{\text{CuLi}}$ $\xrightarrow{?}$ $\xrightarrow{\text{CuLi}}$ $\xrightarrow{?}$ $\xrightarrow{\text{CH}_3\text{CH}_2\text{D}_2}$ CuLi

- (iv) Ethylchloride (i) Li $(CH_3CH_2)_2 CuLi$ (ii) Cul $(CH_3CH_2)_2 CuLi$ (ii) Cul $(CH_3CH_2)_2 CuLi$ (ii) Cul (ii) Cul
- (v) See-butyl bromide $\xrightarrow{\text{Mg}} \text{CH}_3\text{CHCH}_2\text{CH}_3 \xrightarrow{\text{H}_2\text{O}} \text{CH}_3\text{CHCH}_2\text{CH}_3$ $\text{CH}_3\text{CHCH}_2\text{CH}_3 \xrightarrow{\text{MgBr}} \text{H}$

(vi) Tert-butyl chloride
$$\xrightarrow{\text{Li}}$$
? $\xrightarrow{\text{Cu I}}$ $\xrightarrow{\text{n-pentyl}}$ $\xrightarrow{\text{bromide}}$ $\xrightarrow{\text{CH}_3}$ $\xrightarrow{\text{CH}_3}$

- 9. Complete the following reactions and give its detail stepwise mechanism.
 - (i) $CH_4 + Cl_2 \xrightarrow{hv} ? + ?$
 - (ii) Ethane + Cl_2 (or Br_2) \xrightarrow{hv} ? +?
- 10. Write a brief account on following.
 - (i) Corey-House reaction (ii) Wurtz reaction (iii) Grignard reaction
- 11. Give the synthesis of n-nonane from methyl bromide and appropriate alkylhalides using Corey-House synthetic route.
- 12. 1-butyne give white ppts. with Tollens reagent but 2-butyne does not OR 1-butyne give red ppts with Fehling solution but 2-butyne does not. **OR** How can you differentiate terminal and non-terminal alkynes?
- 13. Explain kinetics and detail stepwise mechanism of E1 reaction.
- 14. Explain kinetics and detail stepwise mechanism of E2 reaction.
- 15. Explain carbanion formed reversibly or irreversibly it would leads to second order kinetics.
- 16. Explain with suitable experiment that E2 shows an absence of hydrogen exchange.
- 17. Give the reaction mechanism of dehydrohalogenation of alkyl halide.
- 18. Give stepwise detail carbanion mechanism for E2.
- 19. Explain the reactivity of various 1°, 2° and 3° alkyl halides (R-X) towards E1 and E2.
- 20. For E2 dehydrohalogenation, what is the order of reactivity of alkyl halides ? why?
- 21. Write a short note on 1,2-elimination reaction.
- 22. Give stepwise detail reaction mechanism of addition of Br₂ to alkene via bromoniumion.
- 23. Describe the reaction of bromonium ion with various reagents.

- 24. Give stepwise detail reaction mechanism for halohydrin formation.
- 25. List all evidence for E2 (or E1) mechanism and discuss in detail about any one (or two).
- 26. Neopentyl bromide upon E1 elimination give 2-methyl-2-butene as the major product.
- 3,3-dimethyl-2-bromobutane upon E1 elimination give 2,3-dimethyl-2-butene as the 27. major product.
- 28. Discuss Keto-enol tautomerism with illustration.
- 29. Give the difference between E1 and E2 mechanism.
- Give detail stepwise general mechanism for addition of acidic reagent (HZ). 30.
- Give detail stepwise mechanism for addition of water to propene in acidic medium. 31.
- 32. List the evidence for the electrophilic addition mechanism.
- Acetylene is stronger acid than ethane. 33.
- Give detail stepwise mechanism for addition of HBr to alkene in presence of peroxide. 34.
- What are the precautions should be taken for hydroxylation of alkene with KMnO₄. 35.
- Write the synthesis of the following: 36.
 - (a) 1-propyne from 1-propene.
 - (b) 1-butyne from acetylene (Ethyne)
 - (c) 2-butyne from acetylene (Ethyne)
- 37. What is elimination reaction? Describe with suitable example.
- 38. M.P. of trans-2-butene is higher than cis-2-butene
- 39. B.P. of trans-2-butene is lower than cis-2-butene
- 40. Dipole moment of Cis-2-butene is higher than trans-2-butene.
- 41. B.P. of cis-1,2-dichloroethene is higher than trans-1, 2-dichloroethene but M.P. of cis-1,2-dichloroethene is lower than trans-1, 2-dichloroethene

Q.4. Do as directed:

- (a) Acetylene react with Li (or NaNH₂) followed by methyl bromide.
- (b) 2-pentene react with O₃ followed by H₂O/Zn.
- (c) Propylene react with Br₂ followed by alcoholic KOH and NaNH₂.

Q. 5. Define the following terms:

- (i) Electrophile (ii) Hydration (iii) Mechanism (iv) Carbanion (v) Elimination reaction.
- (vi) Tautomer.

_		General Chemistry-1
Q. 6.	Sugg each	jest the possible product and give detail stepwise mechanism involved:
	(a)	Ethylene $\xrightarrow{\text{Br}_2/\text{H}_2\text{O}}$ +
	(b)	Propylene HCI +
	(c)	Ethylene $\xrightarrow{Br_2}$
	(d)	Propylene $\xrightarrow{\text{H}_2\text{O/H}^+}$ \longrightarrow + \longrightarrow
	(e)	Propylene $\underline{\text{H}_2SO_4}$
Q. 7		plete and rewrite the followings:
	(i)	1-butene $\xrightarrow{O_3}$ $\xrightarrow{Zn/H_2O}$ $\xrightarrow{Zn/H_2O}$
	(ii)	2,3-dimethyl-2-Butene $\xrightarrow{O_3}$ $\xrightarrow{Zn/H_2O}$ $\xrightarrow{Zn/H_2O}$.
	(iii)	Isobutylene $\xrightarrow{O_3}$ $\xrightarrow{Zn/H_2O}$ $\xrightarrow{Zn/H_2O}$.
	(iv)	2-butene $\xrightarrow{O_3}$ $\xrightarrow{Zn/H_2O}$ $\xrightarrow{Zn/H_2O}$.
	(v)	Cyclohexene $\xrightarrow{O_3}$ $\xrightarrow{\text{CCl}_4}$ $\xrightarrow{\text{Zn/H}_2O}$ $\xrightarrow{\text{Zn/H}_2O}$
	(vi)	2-pentene $\xrightarrow{O_3}$ $\xrightarrow{Z_n/H_2O}$ $\xrightarrow{Z_n/H_2O}$.
	(vii)	Cyclopentene $\xrightarrow{O_3}$ $\xrightarrow{Zn/H_2O}$ $\xrightarrow{Zn/H_2O}$.
	(viii)	1-methylcyclopentene $\xrightarrow{O_3}$ $\xrightarrow{Zn/H_2O}$ $\xrightarrow{Zn/H_2O}$.
	(ix)	3-methylcyclopentene $\xrightarrow{O_3}$ $\xrightarrow{Zn/H_2O}$ $\xrightarrow{Zn/H_2O}$.
	(x)	2-methyl-1-pentene alk. KMnO 4 +
	(xi)	Isobutylene $\frac{\text{KMnO}_4}{\text{Na}_2\text{CO}_3}$ +

(xii) 2-methyl-2-butene
$$\xrightarrow{\text{KMnO}_4}$$
 + -----

(xiii) Cyclohexene
$$\frac{\text{KMnO}_4}{\text{NaIO}_4}$$

(xiv) Acetylene
$$\xrightarrow{\text{LiNH}_2}$$
 + $\xrightarrow{\text{n-Butyl bromide}}$ -----

(xv) Acetylene
$$\xrightarrow{\text{NaNH}_2}$$
 $\xrightarrow{\text{CH}_3\text{Br}}$ $\xrightarrow{\text{CH}_3\text{Br}}$

(xvi) Methyl acetylene
$$\xrightarrow{\text{NaNH}_2}$$
 $\xrightarrow{\text{CH}_3\text{CH}_2\text{I}}$

(xvii) Methyl acetylene
$$\xrightarrow{HCI}$$
 \xrightarrow{HI} \xrightarrow{HI}

(xviii) Methyl acetylene
$$\xrightarrow{HBr}$$
 \xrightarrow{HI} \xrightarrow{HI}

(xix) Acetylene +
$$H_2O \xrightarrow{H_2SO_4} \longrightarrow \longrightarrow$$

(xx) Methyl acetylene +
$$H_2O \xrightarrow{H_2SO_4} \longrightarrow \longrightarrow$$

